PyData Yerevan 2022

Eating humble Py: From toy problem to real-world solution in predicting Customer Lifetime Value
08-13, 11:15–11:55 (Asia/Yerevan), 213W PAB

I should have known I was up against it when even my Kaggle solution sucked. I’d been tasked with launching our company’s research efforts into Customer Lifetime Value prediction, so naturally, I turned to that grail of tutorials and toy datasets, and started exploring. Very quickly I learned two things: the go-to CLV dataset was not worth going to, and I really needed some retail domain experts.


This is the story of my team’s journey from play-problem to real-world solution. Learn, as we learned, what is Customer Lifetime Value and why does everyone in retail suddenly want to predict it? Take a tour of common approaches to solving this problem, from machine learning to good old fashioned spreadsheets. Feel all the practical pains our clients inflicted on us, and discover why CLV prediction is not as easy as Towards Data Science makes it out to be.

Whether you’re an analytics enthusiast, a novice data scientist or an experienced practitioner, and whether you work in retail or not, there’s something in this talk for you: a little bit of machine learning theory, a peek into a new domain of application you may not be familiar with, or the chance to just cringe in sympathy at problems you know only too well.


Prior Knowledge Expected

No previous knowledge expected

Katherine is a Data Scientist and Data Science Ambassador in the e-commerce domain, conducting both research and corporate training in AI, machine learning, Natural Language Processing (NLP) and data science. She is a speaker, writer, teacher, and passionate workaholic.

With a background in computational linguistics and (deep) machine learning, Katherine has worked in R&D for Mercedes-Benz and the Fraunhofer Institute, specialising in user interfaces and Natural Language Understanding. In her 'free' time, she is education Lead for Women in AI Upper Austria, volunteer mentor at Female Coders Linz, a trainer for Linkedin Learning, and recently co-authored the textbook, 'The Handbook of Data Science and AI'.